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Abstract

When we use area-based panel data to analyze economic activities in a metropolitan
region, we have to treat cluster effects because some economic activities agglomerate in
a group of areas adjacent each other and thus form a cluster. We propose a resampling
method, namely leave-one-out cross-validation, to find how many clusters are there in
the region and which area belongs to which cluster. We examine the effectiveness of the
method with simulation studies and compare the estimates with the within-class estimates.
We also apply our method to find potential demand for houses in Tokyo Metropolitan Area.
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1 INTRODUCTION

In this paper, we will consider statistical issues when we use area-based panel data models in
order to analyze economic activities in a metropolitan region. The metropolitan region consists
of officially pre-determined areas like counties or municipalities. Most of the data available for
us are based on these areas.

These official borders do not necessarily constrain economic activities of a private sector
in a metropolitan region. Economic infrastructure such as railways, subways, highways, roads,
canals, ports and so on, which are called the second nature by Krugman (1993, 1996), lays across
the borders and possibly affects the activities. We often find manufacturing factories agglom-
erate along a canal, while software firms agglomerate around a university in the metropolitan
region. Their activities are across the pre-determined official areas but are concentrated in areas
adjacent each other. We will call the group of areas where some economic activities agglomerate
a cluster.

Although detecting the clusters may not be difficult when the economic activities of concern
are observable, it is a statistical issue to do so when they are unobservable. We will consider
the case where area-based panel data are available and the clusters are represented by cluster
parameters in a linear regression model, which are the same within a cluster but different
between clusters. Thus the model is regarded as a panel data model that has cluster-effects as
fixed effects.

If we are not concerned with the cluster-effects but concerned only with the parameters of
observable explanatory variables, we can adopt an area-effects model that has area-specific-
effect parameters for each area and obtain the within-class estimates of parameters of concern
by applying analysis of variance (see Hsiao (1986) for details). Even in this case, the within-
class estimates are possibly less efficient than the estimates of the cluster-effects model, as long
as we can detect the structure of clusters among the metropolitan areas.

In section 2, we will consider a statistical method how to detect which area belongs to
which cluster. From statistical viewpoint, this issue is regarded as a sort of model selection

problems. We adopt a resampling method, namely leave-one-out cross-validation, since the



method is robust to distributional assumptions and the calculation is easily implemented in a
linear model. The method is introduced by Stone (1974) and Geisser (1975) and its application
for broad model selection problems is discussed in Davison and Hinkley (1997), though it has
not been applied to detect clusters with area-based data. The selection procedure with the
method is also explained. Section 3 shows results of simulation studies how well the leave-one-
out cross-validation works to detect the clusters. We also compare the within-class estimate
with the cluster-effects estimates. We find the cluster-effects estimates are more efficient than
the within-class estimates. The method is also applied to estimate a housing demand function
in Tokyo Metropolitan Area. Housing demand in an area depends upon basically income per
household, amenity of an area and the disutility caused by congestion. It also depends on
unobservable utility-improving environmental factors that are not capitalized in the land price of
an area. Potential housing demand is affected by these factors in an area, which are represented
by the cluster-effects in a statistical model and are to be estimated. Section 4 concludes and

discusses remaining issues.

2 STATISTICAL MODEL WITH CLUSTERS

Let us consider a model with area-based panel data. Assume that we have observations of m

areas for T periods. The area-effects model is expressed as follows:
Yie = i + T+ v, i=1,...,m; t=1,...,T (1)

The {y;;} and {z;}, which does not include a constant term, are dependent and independent
variables that represent socio-economic properties of the ith area, respectively. The g (K x 1)
represents the relationship between them which is of concern for researchers. The pu;, one of
area-effects, represents unobservable socio-economic characteristics in the ith area. The v;; is a
error term that is independent and identically distributed for all 7 and ¢.

Let us assume there are g (¢ < m) clusters, which are unobservable and thus we have to

decide q statistically. The area-effects, p;,2 = 1,...,m, should be classified into ¢ classes, say



[, - .., tg. Then the cluster-effects model is as follows:
Yie = g+ + v, i=1,...,m; t=1,...,T; if i€ gth cluster (2)
The vector form of eq.(2) is
Yyr = Dopo + XeB+v, t=1,...,T. (3)

The po = (u1, - - -, i4q) is a parameter vector to be estimated. Dy is an m x ¢ matrix of dummies
that indicates which area belong to which cluster. For example, if sth area and [th area belong
to the same cth cluster, then the cth element of the sth and /th rows of D are the same, namely
1, and the other elements of the rows are Os.

We will consider how we can estimate the rank of Dy (namely ¢), o and [, and identify
the structure of Dy based on the model eq.(3). There are two points to be considered for the
estimation. Firstly, we have to find how many clusters are there, which area belongs to which
cluster and to estimate the parameters of concern at the same time. Without the classification
of area-effects into cluster-effects, we cannot obtain the consistent estimates of . Secondly, let
A be an adjacent matrix of areas in the region, which is an m X m symmetric dummy matrix
indicating which areas are neighbors of an area. For example, if the 4, jth element is 1, then
1, 7th areas are adjacent. The diagonal elements are 1 by the definition. Since D, indicates
the structure of clusters, it should be a transformed matrix of the adjacent matrix A by using
information of which areas are combined together to a cluster.

From the statistical point of view, detecting the rank and structure of Dy is regarded as
a model selection problem. In this case, the largest model is the case where pq, ..., u,, have
different values, that is, they are not classified into fewer classes at all, namely the area-effects
model. On the other hand, the smallest model is the case where p4, ..., y,, have the same value,
that is, they all are classified into one class. There are a lot of possibilities of classification
between the largest and smallest models.

In a statistical model selection context, there are two major methods, one is using Kullback-
Leibler-information-based selection criteria, namely AIC, BIC and SBIC (see Liitkepohl (1991),

for example), and the other using a resampling-method-based selection criterion. The former

3



criteria are easily calculated but they heavily depend upon the assumptions of distributions.
On the other hand, the latter criterion needs huge computation time, though they are robust
to them. The asymptotic equivalence of cross-validation and AIC is proved by Stone (1979).
The model-selection criterion with the resampling methods is aggregate prediction error. In

a linear regression model, it is defined as

ZE (Y —n(X;, F))*|F)

=1
where Y ; is one of possible realizations at X;, n(Xj, F ) being an estimate of mean response
function and F is an empirical distribution of ¥ and X that represents data. One of the
estimate of the aggregate prediction error is obtained by leave-one-out cross-validation, which

is defined as
. 1m
Acy = 52 n(z;, F-j))?

where F_; represents the n — 1 observations {(x, yx), k # j}. In a linear regression model, we
have 7(z;, F_j) = a:jﬁ_j where B_j is the estimate using just the data of ¥ and X excluding
the jth sample. To select a model among possible combination of explanatory variables, we
calculate ACV for all combinations and select the combination which attains the minimum value
in principle. It is, however, almost impossible because there are too many possibilities to try.

In general, forward, backward, or stepwise methods are often used for selecting combinations
of variables when trying all combinations is impossible. In our model-selection problem, we
select the backward method, that is, starting with the largest model, we combine two adjacent
areas for all possible cases, selecting the combination that attains the smallest APE and regard
a newly integrated area as a cluster. Then the number of the areas decreases by one in every
step of the procedure. By repeating this process, we can find the clusters where the APFE is the
smallest.

Let us explain the procedure stated above more precisely. The matrix form of eq.(3) is
y = (1r ® Do)po + X3 + v, (4)

where vy = (yi,...,v7), X = (X{,...,X}) and v = (v],...,v}). The purpose is to find

the structure of clusters which is expressed in D, and estimate py and 3. Since we use the
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backward method to combine the adjacent areas, we need an m x m adjacent matrix, A(m),
as an initial areal condition, while an initial matrix for D is an m x m identity matrix. First,
we calculate APFs for all possible combinations of two areas adjacent each other. For example,
assuming the kth area and [th area are adjacent, we calculate APE with an m x (m — 1) matrix
D(m — 1;k = 1), which created by integrating the kth and Ith column vectors. Among APEs
for all possible combinations, we can select the minimum-attained combination. We define the
value of APE(m-1) as APE*(m —1) and new (m—1) x (m—1) adjacent matrix as A(m—1). In
the next step, we use the adjacent matrix A(m —1) for searching possible combinations of areas.
Let us redefine y; and z; as the jth element and row vector of y and X forall j =1,...,mT,

respectively. Then APE(k) is calculated as

1 mT A R
APE(k) = s >y —di(k)i—j —x;6-5)°
j=1

where d; (k) is the jth column of 1® D(k), ji_; and (_; is the estimates using the data excluding
yj,d;(k) and z;. The optimal APE(k) is
APE*(k) = min APE(k)

Repeating this procedure from k = m to k = 2 and selecting k* as k* = min; APE*(k). Then

k* is the optimal rank of Dy and its corresponding D(k*) is the structure of clusters.

3 SIMULATIONS AND EMPIRICAL EXAPMPLE

In this section, we will examine if the method proposed in the previous section would work well
and apply it to analyze municipality-based data of housing start in Tokyo Metropolitan Area.
In the simulations, we will compare the estimates of cluster-effects model with that of the area-
effects model, namely within-class estimates. Note that we are not able to find the structure
of clusters or obtain consistent estimates of u with the area-effects model. The within-class

estimate of 3 is defined as follows:
B = (X'QX) "' X'Qy

where Q = I,y — Z(Z'Z)'Z', Z = I, ® 17.



3.1 SIMULATIONS

In the simulations, we generate the necessary data based on eq.(2) for 3 years (T=3). We use
a 6 x 6 lattice for a total region to be examined, where there are 36 areas (m = 36 in eq.(2)).
We have to define which are neighbors of an area at first. We assume that left, right, upper
and lower adjacent areas of an area are its neighbors. Note that there are just 2 neighbors
for 4 corner-areas of this region and 3 neighbors for edge areas. We make sequential numbers
for the areas in an order so that the ¢, jth cell of the lattice should be 6 x (i — 1) + j (see
Fig. 1). We set three clusters, the upper-left cluster consisting of 9 areas (1,2,3,7,8,9,13,14,15),
the upper-right cluster consisting 9 areas (4,5,6,10,11,12,16,17,18), and the rest consisting of
18 areas. The cluster effects are set as p = (2,5,10) for upper-left, upper-right and the rest
clusters, respectively.

The explanatory variable and the errors , x;; and v;;, are independently drawn from N(3,9)
and N(0,4), respectively. The parameter 3 is set to be 2. We conducted 1000-times simulations.

In these simulations, we also consider the other case, where the cluster-effects are random

and spatially correlated. The model is specified as
Yit :xit6+ui+vit, 1= 1,...,m; t= 1,...,T,

where u; represents random cluster-effects. We specify the conditional density function of the

1th variable, u;, as follows:

1

\V2ro

where N is a set of neighbors of the ith area and the conditional mean is defined as

Fuil{us, 5 € Ni}) = exp [—(u; —m(uj;j € N))*/o?], (5)

m(uj;j €N = i+ > Aeg(uj — )
JEN;

where ¢;; = c¢j;, ¢;; = 0 and ¢;; = 1 if there is pairwise dependence between area i and area &,

otherwise it is 0. The joint distribution of u = {us, ..., u,,} is obtained as follows:

w~ N, (I - XC) ™M), (6)



where p = (p1,.-., ftm), C @ m X m matrix with its ¢, jth element being c¢;; and M is a
m x m diagonal matrix with its ith diagonal element being o2. The detailed explanation of
its properties is discussed in Cressie (1993). The random cluster-effects, u;, i = 1,...,m, are
generated from normal distribution of eq.(6), where p = 0, A = 1/4, M = 3 x I, and the
adjacent matrix is defined above.

Firstly, we evaluate how correctly we can select the number of clusters, the structure of
clusters and how efficiently we can estimate the values of p with the method. For the first
point, we examine the distribution of the selected number of clusters in the simulations. We
also examine the expectation how many estimated clusters lay across the true clusters. For the
second point, we evaluate the efficiency by the mean squared error for each 36 areas, comparing
three mean squared errors of the estimates, namely estimates with true clusters, those with
selected clusters and the within-class estimates.

In table 1-1 and 1-2, we can see descriptive statistics of the distribution of the estimated
number of clusters and the number of estimated clusters laying across the true clusters for
the cases in fixed- and random-effects models. The mean and median of estimated number of
clusters obtained with 1000 times simulations are 9.58 and 9, respectively, in the fixed-effects
model and 14.16 and 14, respectively, in the random-effects model. Its standard deviation is
1.80 and about 80 % of the estimates is in the region from 7 to 12 in the former case. With
this simulation, we can see the method tend to select larger number of clusters. Even if the
estimated number of the clusters is larger than the true clusters, it does not cause bias of the
estimates of the parameters as long as the column vectors of true cluster matrix, Dy of eq.(3)
are expressed as linear combinations of the estimated cluster matrix ZA), though it affects the
efficiency of them. The expectation of the number of estimated clusters that lay across the true
clusters is less than 0.5, its median being 0 and the 90 percentile is 1 in the fixed-effects model.
Thus the probability of the estimated clusters lying across the true clusters is extremely small.
On the other hand, in the random-effects model, the expectation is more than 1 and the median
is 1 so that there is a little possibility that the estimates of parameters are biased.

In table 2-1 and 2-2, we can see means of i and mean squared errors (MSEs) of the OLS

estimates in the estimated cluster model, true cluster model and non-clustered model, namely



the within-class estimates. In both cases of fixed- and random-effects models, the estimates
of the cluster-effects in each area are almost unbiased. In the fixed-effects model, the mean
squared error of the clustered model is uniformly smaller than the non-clustered model, though
they are larger than the true model. Note that the mean squared error of the clustered model
consists of three parts, that is, the squared bias, variance of the estimate and the bias caused
by misclustering. The third factor of the MSE is negligibly small from table 1-1. Even in the
random-effects model, the MSEs of the estimates in clustered model are uniformly smaller than
the non-clustered model, though the values are not so different from the non-clustered model.

Secondly, we compare the estimates of § in the estimated clustering structure with the
within-class estimate. In table 3, we can see means, standard deviations and MSEs in OLS
estimates with estimated clustering structure, in the within-class estimate and in OLS estimates
with true clustering structure. In the case of fixed-effects model, both the standard deviation
and MSE of the estimates of the clustered model are superior to the within-class estimate,
though OLS estimates of the true cluster model is the most efficient among these estimates. In
the random-effects model, since the within-class estimate is obtained by eliminating the effects,
it is the most efficient estimate among them. Even in this case, the estimate of the clustered
model is nearly as efficient as the within-class estimate. The OLS estimate with true clustering
structure is the worst.

From the results of the simulations, we are able to conclude as follows: Firstly, the leave-one-
out cross-validation tends to select larger model than the true model but the estimated clusters
seldom lay across the true clusters so that the estimates of the cluster-effects are almost unbiased
and also efficient than the within-class estimates. Secondly, in the case where the cluster-effects
are fixed, the parameter-estimates of the explanatory variables are more efficient than the
within-class estimates. Even in the cluster-effects being random, they are nearly as efficient as
the within-class estimates. Thus, the estimates proposed in this paper are more preferable than

the within-class estimates when the cluster-effects exist.



3.2 EMPIRICAL EXAMPLE

In this subsection, we apply our method to examine the determinants of the number of housing
start per household of the municipalities in Tokyo Metropolitan Area (TMA) from 1996 to 1998,
which is defined as a collection of areas that locate within 60-minute-distant from the Tokyo
station. There are 87 municipalities in the region.

The explanatory variables are logarithm of income per household, logarithm of average price
of residential land and logarithm of population density in an area. The explained variable is also
taken logarithm. We expect housing start in an area with higher income per household will be
larger than other areas. The average price of residential land in an area represents amenity of
the area since amenity is capitalized in the land price. Thus in the area with higher land price
demand for houses is larger than the other areas. The population density represents disutility
caused by congestion. These three variables are the kernel of the determinants of housing start.
At the same time, we are concerned with unobservable factor that affects housing start except for
the kernel. The unobservable factor represents potential demand for houses in an area where,
for example, housing stock per household is below the standard. Or it may be resistant or
improving factor to build new houses by some official restrictions or area-development policies.

In table 4, we can see the estimates with clustered and non-clustered models. The within-
class estimates are somewhat different from the clustered model. In both models, the income
factor is insignificant but land price and population density are significant, though the values
of the estimates are different. The coefficient of the land price is positive because it represents
amenity of an area. Population density affects the housing start negatively because of the
disutility of congestion. In figure 2, we can see which areas belong to the same cluster. Clusters
are found along railways and river. East areas of TMA along Sumida River; Southern areas
of Tokyo and western areas of Yokohama along Odakyu line; Western areas of Tokyo along
Seibu-Shinjuku line, areas in Chiba along JR Sobu-line and so on. In figure 3, we can see the
potential demand for houses represented by the cluster-effects. Potential strong demand for
houses is found in northern part of Tokyo-23-districts and a southern area of Yokohama. On

the other hand, the potential demands in the center and the border areas of TMA are weak.



Let us compare figure 3 and 4 that is a crude map of logarithm of housing start per household.
These two maps give us different impression. In figure 4, the border areas and center of TMA
have strong demand for houses per household. After adjusting the data with income, amenity
and disutility by congestion, the potential demand is found in the areas where the demand

seems to be weak in figure 3.

4 DISCUSSION

We propose a method of deciding how many clusters are there and which area belongs to which
cluster and show by simulations that it works well and the estimated parameters of concern
are more efficient than the within-class estimates. We also apply our method to examine what
are the determinants of the number of housing start in Tokyo metropolitan area and spatial
distribution of the unobservable potential demand for houses.

We adopt an aggregate prediction error as a model-selection criterion, which is estimated
by a resampling method, namely leave-one-out cross-validation. It is possible to estimate the
criterion with other resampling methods, say bootstrap or a hybrid type of them, leave-one out
bootstrap, that may be work better than leave-one-out cross-validation.

The cluster-detecting procedure proposed in this paper does not search for all possibilities
of clusters, because the calculation cost is huge. There may be, however, another efficient
procedure to find the optimum among the possibilities.

What if we cannot use a panel data set? One possible solution is to assume g is unknown
function of location, which is often called an intensity function, and estimate it with a nonpara-
metric method. Though the method in this paper is regarded as spatial smoothing by decreasing
parameters related to clusters, the method employing the intensity function is regarded as a

nonparametric smoothing method.
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Table 1-1: Descriptive Statistics of Selecting
of Clusters in Fixed-effects Model

Number of Clusters

Number of Estimated
Clusters Laying across
True Clusters

Mean
Standard
Deviation

5 percentile
10 percentile
Median

90 percentile
95 percentile

9.58

1.80

—_ =
W N O 3

0.46

0.58

——_ o O O

Table 1-2: Destrictive Statistics of Selecting of
Clusters in Radom-effects Model

Number of Clusters

Number of Estimated
Clusters Laying across
True Clusters

Mean
Standard
Deviation

5 percentile
10 percentile
Median

90 percentile
95 percentile

14.16

2.50

10
11
14
17
18

1.047

0.81

NN = O O




Table 2-1: Estimates of the Cluster Effects and Mean Squared Errors in Fixed-effects

Model
mean mean
mean mean red mean mean squared
squared  squared Square squared  squared duare
) ) error in ) ) error in
Area Mean error in  error in Area Mean error in  error in
non- non-
clustered true clustered true
clustered clustered
model model model model
model model
v 1 2.01 1.00 0.16 1.29 19 10.02 1.02 0.10 1.32
E 2 2.00 1.00 0.16 1.36 20 10.04 1.06 0.10 1.48
% 3 2.06 1.33 0.16 1.41 21 10.01 1.08 0.10 1.43
d 7 2.02 0.96 0.16 1.34 22 9.96 1.09 0.10 1.33
E 8 2.05 1.07 0.16 1.36 23 9.99 1.05 0.10 1.38
L_‘j 9 2.07 1.26 0.16 1.41 » 24 10.02 1.09 0.10 1.33
o 13 1.99 1.02 0.16 1.34 E 25 10.05 1.00 0.10 1.36
E 14 1.99 1.04 0.16 1.38 % 26 9.96 1.02 0.10 1.44
% 15 2.10 1.25 0.16 1.33 d 27 10.02 0.99 0.10 1.34
m 4 492 1.32 0.23 1.36 . 28 10.04 0.93 0.10 1.31
5) 5 499 1.16 0.23 1.57 Lg 29 10.04 0.90 0.10 1.26
3 6 5.02 1.00 0.23 1.32 @) 30 10.00 0.97 0.10 1.32
g 10 492 1.26 0.23 1.45 - 31 9.97 1.13 0.10 1.38
% 11 5.00 1.12 0.23 1.49 32 10.02 1.02 0.10 1.37
I~ 12 5.03 0.99 0.23 1.36 33 10.00 1.03 0.10 1.41
Y 16 491 1.45 0.23 1.48 34 10.05 1.02 0.10 1.35
E 17 5.05 1.43 0.23 1.71 35 10.03 1.11 0.10 1.55
% 18 5.00 112 0.23 1.32 36 10.00 1.01 0.10 1.32




Table 2-2: Estimates of the Cluster Effects and Mean Squared Errors in Random-effects

Model
mean mean
mean mean
mean squared mean squared
squared squared  error in squared squared  error in
Area Mean error in q . Area Mean error in d .
error in non- error in non-
clustered clustered
true model clustered true model clustered
model model

model model
v 1 2.05 4.61 1.59 492 19 10.03 5.31 1.20 5.44
E 2 2.03 4.1 1.59 5.22 20 9.99 6.14 1.20 6.48
% 3 2.08 519 1.59 5.40 21 9.93 6.58 1.20 6.92
E]; 7 1.97 481 1.59 5.31 22 9.72 7.15 1.20 7.37
E 8 1.92 5.48 1.59 5.90 23 9.75 6.34 1.20 6.63
E 9 2.00 6.10 1.59 6.47 » 24 9.79 5.34 1.20 5.37
o 13 2.04 5.40 1.59 5.58 E 25 10.02 4383 1.20 5.25
E 14 1.96 6.26 1.59 6.55 % 26 9.97 5.54 1.20 5.97
=) 15 2.01 6.45 1.59 6.70 d 27 9.95 6.30 1.20 6.91
E 4 488 5.65 1.72 5.76 . 28 10.00 6.35 1.20 6.88
cg 5 5.05 5.19 1.72 5.50 E 29 9.91 6.19 1.20 6.70
— 6 5.00 4.69 1.72 4.97 o 30 9.88 5.30 1.20 5.67
g 10 497 5.79 1.72 5.91 = 31 9.98 475 1.20 5.05
% 11 4.96 5.22 1.72 5.69 32 9.88 513 1.20 543
I~ 12 5.06 5.26 1.72 5.65 33 9.97 5.26 1.20 5.66
o 16 492 6.91 1.72 7.07 34 10.03 5.64 1.20 5.98
E 17 487 6.44 1.72 6.80 35 9.88 5.25 1.20 5.69
=) 18 491 5.87 1.72 6.07 36 9.98 444 1.20 4.81




Table 3: Comaprion of the OLS Estiamte with the Within-class

Estimate
OLS estimate with OLS estimate with
estimated clustering Within-class estiamte true clustering
structure structure
Fixed-effects Model
mean 1.997 1.997 1.996
standard
deviation 0.076 0.079 0.067
mean squared
error 0.0058 0.0062 0.0045
Random-effects Model
mean 1.998 2.000 2.002
standard
deviation 0.076 0.075 0.084
mean squared
error 0.0058 0.0056 0.0071




Table 4: Estimates of the Parameters with Estimated Clustering Structure and Within-class Estimate

The
The Number Estimate with The Number Estimate with The Number Estimate with Number Estimate with
of Areas . . of Areas . . of Areas . . . .
i estimated clustering i estimated clustering i estimated clustering of Areas estimated clustering
within the within the within the .
structure structure structure within the structure
cluster cluster cluster
cluster
t-value t-value t-value t-value
Cluster 1 5 -8.07 —6.28 |Cluster 16 2 -8.46 —6.62 |Cluster 31 1 -9.00 —7.20 |Cluster 46 1 -8.12 -6.26
Cluster 2 2 -7.39 -5.34 |Cluster 17 2 -8.22 —6.40 |Cluster 32 1 -9.89 -7.95 |Cluster 47 1 -7.88 -5.96
Cluster 3 2 -8.17 -6.38 [Cluster 18 1 -10.70 —-8.67 |Cluster 33 1 -8.60 —6.86 |Cluster 48 1 -8.71 -6.78
Cluster 4 2 -7.33 -5.68 |Cluster 19 1 -7.68 —6.05 |Cluster 34 1 -8.35 —6.37 |Cluster 49 1 -8.28 -6.39
Cluster 5 4 -7.28 -5.56 [Cluster 20 1 =712 -5.47 |Cluster 35 1 -12.04 —-8.10 |Cluster 50 1 -9.25 -7.03
Cluster 6 5 —-7.66 =5.79 |Cluster 21 1 -7.45 —-5.88 |Cluster 36 1 -7.11 -5.14 |Cluster 51 1 -6.20 -4.64
Cluster 7 2 -8.73 —=7.01 |Cluster 22 1 -8.80 —6.98 |Cluster 37 1 —-7.86 -5.81 |Cluster 52 1 -7.89 -6.10
Cluster 8 4 =717 -5.36 [Cluster 23 1 -6.68 -5.04 |Cluster 38 1 -6.89 -4.93 |Cluster 53 1 -6.96 -5.34
Cluster 9 3 -7.31 -5.49 |Cluster 24 1 -8.83 —6.86 |Cluster 39 1 -8.06 -5.94 |Cluster 54 1 -8.43 -6.62
Cluster 10 2 -7.64 -5.84 |Cluster 25 1 -9.99 —8.04 |Cluster 40 1 -6.28 —-4.56 |Cluster 55 1 -9.59 -7.29
Cluster 11 2 -8.47 —6.62 |Cluster 26 1 -9.50 -7.61 |Cluster 41 1 -6.88 -5.06 |Cluster 56 1 -7.52 -5.79
Cluster 12 3 -6.91 -5.05 |Cluster 27 1 -10.64 —-8.53 |Cluster 42 1 -6.47 —-4.68 |Cluster 57 1 -8.52 —6.61
Cluster 13 2 -6.88 -5.16 |Cluster 28 1 -11.56 —9.02 |Cluster 43 1 -6.73 —-4.97 |Cluster 58 1 -8.67 —6.81
Cluster 14 2 -8.77 —6.36 |Cluster 29 1 -7.78 —6.13 |Cluster 44 1 -7.00 -5.21
Cluster 15 2 -6.45 -4.81 |Cluster 30 1 -7.98 —6.29 |Cluster 45 1 -8.34 —6.46
Clustered Model Within-Class Estimate
t-value t-value

Income per Household -0.302  -0.868 Income per Household 0.797 0.685
Land Price 1.384 8.257 Land Price 1.545 5.040
Population Density -2.888  -8.990 Population Density -4.942 -3.904
Adjusted R square 0.644 Adjusted R square 0.654




1 2 3 4 9 6
7 8 9 10 1 12
U =2 U =5
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
=10
31 32 33 34 35 36

Fig.1 True Structure of Clusters
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Fig.2 Clusters in the Number of Housing Start
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Fig.4 Crude Map of Logarithm of Housing Start per Household
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